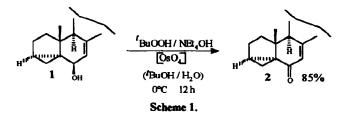
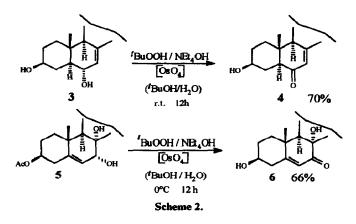
0040-4039(94)01535-X

A Novel and Selective Oxidation of Steroidal Allylic Alcohols to the Corresponding Ketones


Christian Beck and Karlheinz Seifert*

Lehrstuhl für Organische Chemie I/2, NWII, Universität Bayreuth, D-95440 Bayreuth, Germany

Abstract: The oxidation of steroidal allylic alcohols with ^ABuOOH and catalytic amounts of OsO₄ yielded the corresponding $\alpha_{\beta}\beta$ -unsaturated ketones in good yields.


Osmium-tetroxide is a well known reagent for *cis*-dihydroxylation of olefins¹. Due to its cost and toxicity several procedures were developed using only catalytic amounts of OsO_4 and various co-oxidants, like $H_2O_2^2$. *N*-methylmorpholino-*N*-oxide³ or 'BuOOH,⁴ to regenerate the reduced Os species.

Attempted dihydroxylation of the double-bond in 3α , 5α -cyclocholest-7-en- 6β -ol (1), according to the procedure of Sharpless, with ¹BuOOH and catalytic amounts of OsO₄ in the presence of aqueous NEt₄OH yielded unexpectedly 3α , 5α -cyclocholest-7-en-6-one (2)⁵ in a good yield (Scheme 1).

Hydroxylated derivatives could be detected neither by NMR spectroscopy nor by analytical TLC. In control experiments it was shown that OsO_4 is essential for the reaction. A mixture of unchanged 1 and its elimination product 3α , 5α -cyclocholest-6,8(14)-diene were received with 'BuOOH / 'BuOH or 'BuOOH / 'BuOOH

On the basis of these findings we tried to prove the general validity of this method for steroidal allylic alcohols. 5α -Cholest-7-ene- 3β , 6α -diol (3) and 3β -acetoxycholest-5-ene- 7α , 8α -diol (5) were selectively oxidized in the same way to 3β -hydroxy- 5α -cholest-7-en-6-one (4) and 3β , 8α -dihydroxycholest-5en-7-one (6) with good yields without over-oxidation (C-C-splitting) in the case of 5 or reaction at the hydroxy group 3 (Scheme 2).

The advantages of this method are good yields, easy working up, the fact that only small amounts of the very toxic and expensive OsO_4 are needed and the selectivity of the reaction leaving saturated secondary hydroxy groups unchanged. Especially the conversion of 1 into 2 is of some interest due to its applicability in the synthesis of brassinosteroids.

References and Notes.

- (a) Criegee, R., Justus Liebigs Ann. Chem. 1936, 522, 75;
 (b) Schröder, M., Chem. Rev. 1980, 80, 187;
 (c) Göbel, T. and Sharpless, K.B., Angew. Chem. 1990, 105, 1417.
- 2. Milas, N.A. and Sussman, S., J.Am. Chem. Soc. 1936, 58, 1302.
- 3. van Rheenen, V., Kelly, R.C. and Cha, D.Y., Tetrahedron Lett. 1976, 1973.
- 4. Sharpless, K.B. and Akashi, K., J.Am. Chem. Soc. 1976, 98, 1986.
- 5. 3α,5α-Cyclocholest-7-en-6β-ol (1, 300 mg, 0.78 mmol) was dissolved in 2 ml of ¹BuOH and 0.1 ml of 20% aqueous NEt₄OH, 0.53 ml (1.6 mmol) of ¹BuOOH (3 M in iso-octane) and 0.04 ml (0.0031 mmol) of OsO₄ solution (2.5% in ¹BuOH) were added. After standing for 12 h in a cooling box (0° +5°C) 1 ml 5% Na₂SO₃ solution was given to the reaction mixture and stirred for 1 h at 20°C. The reaction mixture was extracted with Et₂O, the ethereal phase was washed with sat. NaCl solution, dried over Na₂SO₄ and the solvent was distilled in vacuo. The crude product (331 mg) was purified by chromatography on 40 g of silica gel and 2 (254 mg, 0.66 mmol, 85%) was obtained.

(Received in Germany 13 July 1994; accepted 5 August 1994)